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Uncertainty Modeling and Possibilistic

Approach to Parameter Estimation

Abstract

A general basis is established for modeling uncertainty and concepts
of vagueness through a combined possibilistic-probabilistic approach. A survey
of the connections between probability theory and fuzzy set theery is undertsaken.
New results concerning parameter estimation,given both etatistical and vague
or natural language information , are presented., New discoveries
involving possibility measures and linguistic probabilities are aisw demonstrated.
Some specific topics treated include analysis of conjunction and disjunciion
operators within a general setting, relationships between possibilistic and
random set operators, and asymptotic behavior of fuzzy set estimators.
Application 40 the development of a correlation/tracking technique - PACT :

Possibilistic Approach to Correlation and Tracking - is presented in outline form.
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1. INTRODUCTION

This report is the final paper during FY-82 for the project "Combined Possibilistic
Approach to Parameter Estimation" under the aegis of the Raval Electronic Systems Command ,

ELEX 6121, Task Area XR-021-0l1, Program Element 61153 N .

Previously, a quarterly progress report was issued by the first named asuthor
( see (}aodthub. Because of the delay in funds for the project, a reduced work effort for
FY-82 has resulted. Consequently, the second, third and last progress reports have been

eliminated in favor of this encompassing summery report for FY-82.

In the first quarterly report, the nature and range of the associated NOSC IR/IED
PACT Project (Possibilistic Approach to Correlation and Tracking) was outlined. The project;
is centered about the PACT algorithm. Briefly, the PACT algorithm utilizes probabilistic
and fuzzy set or possibilistic concepts in treating stetistical and semantic based infor-
mation for the data association and tracking problem. Basically, the algorithm operates
upon & collection of information attribute error distributions,or equivalently, matching
tables and a collection of prechosen (relevant to the given scenario) inference rules.
The basic output of the algorithm is the posterior distribution ( in either the classical
statistical or fuzzy set sense ) of correlation ppssibilities between any two given candidatez

track histories which are suitably updated.

The scope of the task which this report addresses is to define fully the inter-
relations of possibility and probability theory so that practical quantitative applications
can be developed. This obviously relates &irectly to the PACT Project. Rigorous techniques
must be developed for dealing with estimation problems which contain within their formulatior .
further connections between possibility and probability theory. Specifically, this includes, |

as oflined in a previous communication ( see Schuster 121)

‘(a) Dectermination of proper possibilistic conjunction and disjunction operators

(b) Development of relations between fuzzy set operators and ordinary set ones

-




(c) Derivation of a sampling theory which parallels random sampling theory

for both large and small sample sizes,

It should be noted that the first quarterly progress report addressed in part the

last mentioned issue.

This report consists of a main overview text written jointly by both authors, which
contains : An introductory section {1) scoping out the paper's purposes; A section (2) con-
cerning motivation for the analysis of fuzzy sets, random sets, and their connections
through the presentation of 3 general example followed by some discussion; A section (3) on
the framework of analysis conslsting of the topics : internal vs. external modeling, prelinge
uistic concepts and ideas obtained through nabural languasge, concept of fuzziness as a prima--
tive, development of general logical systems ahd ambiguities, relationships between fuzzy
sets and their operations and probabilistic concepts. A section (4) on logical ( or fuzzy
set) systems centering about a procedure for choosing a particular system; A section (5)
concerning Manes' important generalization of probabilistic and min-max fuzzy set systems,
with a new result characterizung Manes' system relative to general fuzzy set systems; and
finally, a section (6) concerning open issues and general conclusions.

The first appendix (I.R. Goodman) is a thorough mathematical survey of the various
relations betw=2en possibility theory and probability theory. In section 10 of this appendix,
there is a series of new results concerning parameter estimation, for any given arbitrary
combination of probabilistic or possibilistic input descriptions. The second appendix, part
one (I.R. Goodman) i: en outline - in slide form - of the PACT Pr&ject, a direct conse-
quence of earlier and ongoimwork in paraﬁeter estimation (as mentioned above in the first
appendix). ‘the second part of Appendix B ( I.R. Goodman) is essentially the same as the
latest paper summarizing the theoretical structure of PACT, which has been submitted for
inclusion in the Proceedings of the Fifth MIT/ONR Workshop on C3 Systems, 1982. The third
part of Appendix B (I.R. Goodman) is a brief summary of basic fuzzy set/random set theory
for background purposes. Finally, the lact two appendices (Appendix C and D ) (H.T. Nguyen)
are surveys and analyses of two topics of key interest: possibility measures and linguistic

probabilities.
-3~
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2. MOTIVATION

Consider tne following example :

Example |,
Two target histories of interest are being considered by a sensor operator

for posiible correlation. He receives information labelled as Al s A2 ,A3 :

Ay - two dimensional position observations with assowiated updated error

ellipses of some prescribed confidence level

A - reports concerming tentaive classification of targets,such as Filipino

Type Qi or Liechtensteinian Type RT.9

A - vimual sightings including partial identifications, clues, hull lengths,

mast shapes , etc.

Clearly, if information categories A2 and A3 ere ignored, statistical
hypotheses testing theory may be applied to Al to eslablish a standard welghted metric
(Mahala-nobis distance - see e.g., Rae £3 7, Chapter ) for testing for correlation
and determining the level of correlation (statistically) between the two track histories
of interest. Rough gating procedures could then be added to see if A2 and A3 confirm
or perhaps contradict the crucial geolr.cation criterion resulis for Al . (See the
Raval Ocean-Surveillance Correlation Handbook £41,I5] ) for a listing and descriptions
of tracking/correlation systems utilizing the above procedure.) But, how should gates
or their softer ddstributional analogues be systematically established for A2 and A3
and integrated with the results for Al ? Furthermore, can we use human in-field oper-
ator experience to relate in some way information matches , mismatches, and everything
in between, occurring for categories A2 and A3 and Al , 85 well, to correlation levels}
This problem will be solved in detail later in the reportl Indeed, this example, is a

simplification of the problem that the PACT algorithm addresses. (See Appendix 8.)

In the above exemple, the parameter of interest is the true correlation level .

_4+_




found in Goodman [ 67 " . The above example motivates us to formulate the following

scheme for dealing with parameter estimation problems. We need to:

(1)

(2)

(3)

(%)

(5)

estimation when some of the informational input is in linguistic based format. See also
1101 , section 10, for extensive theoretical results. Note that essentielly, Apperdix A

of this paper is [10] , while Appendix B, part two is (9] .)

concerning this within a general framework?

Other exaamples of related nature- both military and non-military- msy be

Categorize the incoming information into subcategories as A

LA Ay,
These categories should be carefully chosen for nonredundancy. Further analysis

of their taxonomy should prove useful.

Establish a rigorous and systematic framework for quantifying information. This
may be identified with the problem of determining the natural domains of attribute
Al y Aoy, A3 sy e+ o For example, in Example 1, Al 's domain consists of all
ordered pairs of 2 by 1 vectors and ellipses, while for A2 , perhaps simplified
labels such as Q% , R7.9 , S6 , etc. will do.

Derive matching level tables or equivalently error"distributions”(in a sense

possibly extending the classical statistical ones) that can occur between what

is reported or observed and what the true values are for each attribute category.

Determine relative weights of importance between the various attribute categories.
For example, how much will we tolerate 2 total mismatch with respect to A2 » vwhen

a relatively good match occurs relstive to Al ?

Establish logical connections - based on either physical considerations or human
operator experience - between the various information categories. These connection#
could be either in the form of inference = modus ponens rules or posterior

distributions constraining or delineating the unkpown parameter of interest.

(See Goodman [ 7] - {9] for earlier outlines for approaching parameter

More generally, we might ask; How do we model uncertainty and conclusions

-5-




Obviously, once we remove ourselves from "hard" statistical information, subjectiv<

ity and personal interpretive variation play important roles. The logical connections
mentioned in item 5 above are usually given in the form of modus ponens inference rules
or posterior distributions. In the latter case, at least for the classical statisyical
situation, Bayes' Theorem is usually invoked with respect to more basic conditional

data and prior distributions. Fcr the former cas<, predicates restricting or describing
the unknown parameter of interest and other parameters or values dc¢iermined through
various attribute categories are related through an "if ( ) then ( ) " structure.

Schematically, we have the restrictions on unknown parameter Q , say :

Plal) €—> " If P(Z) thenV(Q) " .

The lefthand side represents the posterior distribution (possibilistic or ordinary -
see Appendix for clarification and explanation of possibilistic distributions )
of Q given data Z , while the righthand side represents the inference rule " If P(Z)}
is true then V!Q) must also hold " , where P(Z) is some predicate describing Z and
v(Q) is some predicate describinz Q. For example, let z=(z(i),z(3)) , with 7{1) «

(Zgi), Zéi)) and Z(J)ﬁ(zl(J),Ze(j) ) , the superscript i referring to data for

track history i and j for track history J ,the subscript 1 referring to attribute category

Al and 2 referr.ng to attribute AQ . Then , we may let , for example,

& . .
P(Z) = Zl(l) and Zl(J) very mildly ( or to a low level) match
2

and 22(1) and ZE(J) strongly match

{4 . *)
v(Q) = correlation level Q is high at least .

The words "very mildly" , "strongly" , "high at leasy" could, if suffivient information
were present, be replaced by more quantitative values such as d]_,‘ie ) <£3 , where

each J]( is some number between O and 1 indiceting the intensity of matching level.

(Again, see Appendix B for clerification and elaboration of this idea.)

-6-
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It should be noted that many posterior distributions and/ or inference

rules may be present which delineate the possible values of Q given Z .

Wiih the problem modeled according to the above mentioned scheme, the next
basic question concerns the actual mpAthematization or translation of the problem into
symbols which can be manipulated according to some established calculus. How do we
translate the problem into a consistant rigorous framework? What means do we use to
translate the atomie or fundamental information parts? How are compound informational
parts to be exhibited through appropriate choice of operators ? Which parts of the
problem are more amenable to ordinary statistical / probabilistic analysis and hence
modeling and which parts to possibilistic/ fuzzy set modeling? Certainly,natural
language descriptions appear more easily put into fuzzy set structure than classical
probabilistic ones . (Seellllforasvrvg) On the other hand, even concepts that may appear
statistically describable muy also be modeled via fuzzy set theory. Fcr example,
classification often entails rather overlapping possible values or classes, due to
the vector of subcategories in which an obJject has to lie to qualify to be in a par-
ticular class. Indeed, some classes may actually be subsets of others. In addition,
it is possible that the exact definitions for the classes themselves are vague and
moreover the relations between the classes may not be clear. For example , A2 could
contain C and D , which are defined by knowledge of Irequencies, ship size, shape,
and number of engine emitting energy :sources on-board. Overlaps between C and D may
gbound. Thus it is not appropriate to considei o+dinary probability distributions
over A2 » since the elementary event§ C and D , among others for example, are not
distinect or disjoint. Rather, because of the overlapping flavor of A2 , eitrher

random subsets of A2 or more generally certain equivalence classes of random eubsctis

of A, ( equivalence here is in the sense of having the same one-point coverage function’

- see U2] ) or (the same as ) fuzzy sets.

Analysis of uncertainty in its most general form requires modeling and




measuring imprecise concepts’ expressed by natural languege. By natural language, we mean !
that medium through which all human ideas are formed including classical set theory
and two-valued logic as well as mcre ambiguous concepts including "tall" , "happy" .

Gaussian distributions , uniform distributions, "within 3 units of" , "close to" ,

"almost all" , " there exists" , " approximately a subset of to degeee 0.6 " member of
> 2 >

set G " , approximately a member of H to degree 0.4" , etc.

The difficulty with natural language modeling used asﬁdirect tool for analysis

is the disorganization of the field. Despite the heavy ‘nfluence of pioneer linguists

Sapir, Bloomfield , Jespersen, Boas, Whorf ( aad the famous Whorf-Sapir hypothesis on

LB L RTEL DT

language restricting che thoughts of the native spesker) and the later work of formal

linguists Hiz, Harris, and Chomsky , among others ( see [I13]1- (|31 ) , what is evident
is that a unified theory of linguistic:. entailing both semantics (mcaning) and syntactics
(operations, form) is needed which is suitable for complete mathematization. One candidate;
approach is due to Zadeh [ |9] using fuzzy set theory. ( See also the work of

Grenander, for a different perspective E2CG o D

Other approaches to the modeling of uncertainties which do not deal directly
with the modeling and emulating of natural language, but do treat the infsrmation coatent

content contained therein, include :

1. Probability theory, including random variables, random functions, and more

e AR ASANMGE AN = 7 < w # 2

recently, random sets.
2. Multivalued logic/ truth tﬁeory and the ensuing set theory developed from it
3. Fuzzy set theory / possibility theery.
L., Flou c7 aultiple set theory, This includes interval and sensitivity theory.

5. Extremal entropy techniques. This area could optionally be treated under

probability theory, because of its close relationship.

6. Dempster-Shafer uncertainyy theory- belief, dov»t, plausibility measures

-9-
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3. BASIC FRAMEWORK OF ANALYSIS

The basic analysis of uncertainty modeling revolves around a series of

general topics :

1. Internal vs. external modeling.

In the internal approach, explicit analytic relatlons are sought connecting

one approach to uncertainty to another. For example, Negoita and Ralescu, through their '

Representation Theorem ( see [2]] ) tied up very neatly classical fuzzy set

operations with flou set operations. As another example of the internal approach,
Goodman, Orlov, Nguyen, and Hohle, among others ( see (121, (221-124]) demonstrated
direct connections between random sets and fuzzy sets and:certain of their operations.
In the external approach, unifying generalizations are sought which reduce to
various approaches to uncertainty modeling. Here the work of Hirote [ 257 , Schefe [26)
Gaines Fle may be cited for developing structures that simultaneously gemeralize
probability and fuzzy set systems, The most far reaching work in this area is due
to Manes Cﬁlg ) who derived a collection of axioms which not only generalize

probability theoryandlnm-WﬂXfuzzy set theory, but a whole host of other systems,

including topological neighborhood theory and credibility theory. (See section S for
more details on Manes' work, where it is shown certain restrictions must be imposed on i

fuzzy set systems to satisfy Manes' axioms.)

2. Prelinguistic concepts and ideas gbtained through natural language.
This topic concerns itself with the ability of natural language to express

ideas accurately and succinctly as well as the formalizifg or mathematizating of
ratural language for dealing with uncertainties. Comments were made previously on

the lack of progress in this extremely difficulti area. Ironically, we can express

within a few words,ideas such as love, happiness, temporal vague concepts, am-

biguous descriptions - which are perfectly understandable to another reasonably

PP S

educated speeker , as well as various combinations and operations on this ideas =

yet cannot express this concepts easily within a rigorous framewark in terms of all

-9-
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the component primative or atomic parts. On the other hand "complicated " mathematical
terminology , such as is typically found in category theory or algebraic topology or
deductive logic studies, really express concepts far simpler in nature than what lan-
guage can express. ( Of course, we cannot discount the abi%g;y of language to represent-

albeit how awkward- pure mathematical concepts .)

3. Gancept of fuzzines as & primative

t is the firm conviction of both authors as well as Zadeh and others ( see
e.g., [29] ) that because rathematicel apalysis has shswn that fuzziness is
a weak form of randomness , i.e., 2 looser type of ranaomness without the constraints
of the probability distribution entailed, fuzzy sets and their operations are a natural
tool to express linguistic concepts , rather than prcbaosiiity distributions. Thus,
the fundamental idea of a point partielly belonging to a set with degree specified as
some number between O énd 1 may well be taken as an intuitive concept represénting
the possibility that the point is in the‘sét, rather than the probabililty it is in the

set ( the set now considered as a random set ). (See Appendix f far the develorament

cf explicit relations between fuzzy sets, random sets, and random variables. Essentially,}!

fuzzy set -with similar results valid for many fuzzy set operations- is equivalent
mathematically to the claess of all random sets which have in common the same one-point

coverage function, namely the membership function of the given fuzzy set.)

L. Reyelopment of general logical (multivalued logic) systems . Ambiguities.

This topic is 8 basis for further work in developing unified approaches to

fuzzy set modeling. Too often in the pést ( see for example, Dubois and Prade L Hl )

myriad distinct fuzzy set systems have been proposed for use in modeling uncertainties,

without paying attention to the inherent ambiguity of defibhition present. More specific-
ally , comsider the problem of defining ar appropriate concept for the intersection of

two fuzzy sets. Originally, Zadeh (1965 301 proposed that minimum as an operation on

the respective membership functions was the most appropriate. Later, Bellman and Giertz

- ]O_
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{311 were among the first to justify on a rigorous basis the use of minimum &6 &n
3231 u

intersection operation. ( See shso the survey of Klementdon rigorous characterizations

of varmous fuzzy set operatioms, including intersection, union, complementation,) However,

the justification required certain constraints ( mutual distributivity ) which are not

realistically required within a general setting. Other definitions for intersection resulted,

ineloding; the use of product - also justified, with agein eppropriate restrictions. (Again,

sée the Dubois and Prade survey il .} Clearly, minimum and product, while both extending !
ordinary intersection (reletive to zero-one type membership functions ) are considerably
different. Which one to choose or not? The answer to this problem may well lie in defining
an entire class of fuzzy cel operations - not just a single operation- which in the most
natural way abstract the ordinary concept of intersection. Such a class has been proposed

(see Klement [}1' ) and Goodman [29] ) , called the class of t-norms ( 2 term borrewed

from a branch of probebility totally independent of fuzzy set theory, developed by Schweitzer
and Sklar [ 33 ) based on earlier proposals of Menger (34) ). These operators are i
symmetric, associative susually assumed aledD continuous, obey certain boundary conditions

for compatibility with ordinary intersection, are nondecreasing in their arguments, and

numerically are bounded above by ( the largest t-norm) the minimum operation. (See ,again

{33] for propertics) see also Haack [35) and Rescher [361 for 1istings of multivalued logic
systems where special cases of t-norm and t-conorm operators are used forf‘s and“or”.)

Similary, other classes of definitions may be developed for union (t~conorms)

complement (involutions) , and in turn these genmers} d:finitions, & la multivalued logic

may be used to develop general compound fuzzy set operations and relations, including lnvﬁaﬁn;

the quantificetions "for all;’a.nd "there exists" , as well as subset and arithmetic (in & !

'
fuzzy set sense) relationships., In addition, this leads to the general concept of conditional;»
fuzzy sets ( analagous to conditionel prcbutility distributions ) , fuzzy set Bayes' theore.-r%_
and in turn, a theory of small and large fuzzy set sampling . (See Goodman (37 .) ‘

Even with the general unifying approach as described , problems of ambiguity of ,

!
definition still arise. For example, the fuzzy set quantifier "for all x in X, ( ) holds"may .

be definable by the relation , as expressed in Emglish, " ( 2'& () &( z\)&...& ( ;(" ,
. ' | $% n

g1




where ( ) represents some relationship such &s  "if x;is in A then x;is in B ", x;varyipg
4 .

over the universe of discourse X , and where A and B are fuzzy sets predetermined here.
On the other.hand, the same concept could conceivably be expressed directly by & unary

4} }
operation<m1@6§§$%)‘which is a fuzzification of "for all" , i.e., @ monotonically increasing
= H .

function over the unit interval which rises sharply tovards one neor domain value one and

¥hich otherwise is zero before these values. (Similar monotonic operations are used ir fuézy:
sct theory to define "&lmost all", "at least most", etc.) It is easy to see that in general ,
though again the two concepts extend the ordinary meaning in zero-one set theory of‘}or aI{: i
they represent two different approaches to the universal quantifier. Both definitions, it

should be noted, depend on the general t-norm definition of imtersectton(through & ) , the

second depending as well -through the "if ( ) then()'relation on the general definition of

union and complement. Which one to choose? In turn, the problem of appropriately modeling

a particular fuzzy set with respect to the corresponding original numerical or linguistic
concept also arises. What individual variation of response should be allowed? How specific

should the universe of discourse be? For example, when considering the fuzzy set "long ",

g
do we consider ships, cars, both; is there some grand scale where "long" can be quantiativelys
established through its membership function , other than the obvious fact that it is some
monotone increasing membership function? One answer to this problem is analagous to the

problem of modeling an appropriate probability distribution: parameterize and then chooce

the most appropriate value of the parameter-and hence membership function from the collection

!

through some estimation technique based on empirically obtained evidence.

5. Relationships between fuzzy sets and their operations and probabilistic concepts.

The details of these relationships are spelled out in Appendix A . Recalling the
last comments of subsection 3 above, given a fuzzy set , it may be expediéious to choose

one particular random set equivalent to it. Unich one to choose? How much information loss

occur§ yhen one random set is chosen &s opposed to the entire equivalence class?

-12-




Could some mathematical criterion be used to weed out this random set such as maximal entropy?
What about semantic content? For example, condider the simple fuzzy set representing “tall".
Clearly , this also is a monotone increasing fuzzy set , i.e.,, the membership function must
be monotonivally increasing. However, it can be shown that among the equivalent tandom sets
to any such monotone increasing fuzzy set (see e-g, [29]1 ),two very different ones can be
explicily shown: the so-called SU -type ,which is a random interval with right end point fixgd
at the maximal universe of discourse element , and the T-type, wh. a is very broken-up in
structure and is not any kind of interval. Clearly, the first is more compatible with the

concept of tall- if one point is covered randomly by & random set representing "tall" ,

shouldn't all points tc the right, i.e., having larger heights?-Similarly, there may be a
most natural choice of random set representation for a given fuzzy Set, when the latter has a

membership of seme prescribed type, such as unimodal, continuous, discrete, step-form, ete.

In 2z related vein, we may pose the question as Bhow sLiould semantic based informae.

tion , and thus fuzzy sets, be combined with independently derived random set or random vari-

able information concerning a common unknown parameter vector ?

Finally, it is of importance to ascertain, through the relationships mentioned

above, if random set theory coiuld be used to derive results for fuzzy set theory .

A general schematic outlining the various approaches to uncertainty modeling

is given in Figure '1l.
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4, ILOGICAL OR FUZZY SET SYSTEMS : CHOICE OF A PARTICULAR SYSTEM

All of fuzzy set theory can be developed in a natural way directly through homomorphic-
like evaluations tfrom multiple valued truth theory . 1In turn, multivalued truth theory can
be motivated through natural language enalogues consisting of attributes and linguistic
operators.

In natural language, there exist many compound attributes and operators built up from-
more primative ones., Three connectives play a very significant role in natural language des-
criptions : "not" , "and" ( usually denoted by & ), and "or" . It can be shown that all other
logical connections can be reduced to these in classical two-valued logic. 1Indeed,
theoretically,'all operations can be reduced to one operator , Shefer's stroke operator or
alternative denial (see 38 ,sect.l.5), More recently, it has been shown (see [39] ) that for
multivalued logic systems, & similar reduction is also formally valid. In anycase,it is natﬁ;al
to begin with a small collection of primative logical connectives, add procedures for
compounding them, and denote the more important results by particular terms. We will call
the triple of operators ( not, & , or ) a logical ( or fuzzy set ) system. The interpretation
of this triple of operators - with some collection®ofpredicates or sentences subsumed on
which these operators act- will be at three conceptuslly different levels : linguistic ,
multivalued logic, and fuziy set ( or numericel). The operator not is a unary opera:or on 6’
while & and or are binary operators over {. Difficulties arise as ta the numericel evaluatioé
of these operators, at the fuzzy set interpretation. For example ( as stated earlier in this
text) & could yield both product and minimum &s interpretations at thke fuzzy set end, Which
to choose or other operators to censider? As mentioned previously, & basic choice of per-

missible operators for a logical system is for nct to correspond to some decressing involutive

operator, while & corresponds to some t-norm &nd or to some t-conorm. Other choices for
interpreting & and or may lose the flavor of what we really mean by "and" and "or" . For
example, it is possible that the weighted sum operator ( see [27l,eg. ) - which is its own

DeMorgan dual (in general, & and or can be interprted so that they are not in the classical

DeMorgan relationship ) - could be chosen in place of & and.or for & logicsl system , But

note that this averaging type of operator is neither a t-norm nor a t-conorm.
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Choice of a specific logical system - i.,e., a specific triple of edmicsible operators
for not, &, or - should be based on some combination of praé¢tical considerations and theoret-
ical basis. It is shown in Appendix A s Theoregs 10-12 , that the subfamily of semi&istribu-
tive t-norms Qnd t-conorms ( DeMorgan property may be assumed ) provides a theoretical basis
of operators to choose from in setting up & logical system , when not is associated with
the fuzzy set operator 1-(:) . This basis essentially allows weak homomorphic identification
of arbitrary combinations of the t-norm and t-conorm operators in question,as well as a large
class of fuzzy arithmetic and functional transform operators involving these t-norms and t-
conorms, with naturally corresponding ordinary intersections and unions relative to ranim
sets (equivalent in the usual one point coverage sense to the original fuzzy sets and deter-
mined also by the choice of t-norm and t-conorm,with respect to jointness of distributions).

With the theoretical basis established firmly : we should only in general seek those t-
norms and i conorms which are semidistributive , we must use the ztructure of a given scenario

to further define the appropriate choice for the logigal system to be used for the modeling.

In review ( see [291 ), the semidistributive family of t-norms consists of all

discrete weighted sums of the form
mtl m o+l m
woo S, X . , Se -
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O=by £ 8; <b; <8< by, °* -_{an'l < b < & 4 =1 fixed arbitrery constants ;
each F) is that bivariate probability distribution function corresponding to the random Wﬁiﬂr‘
(31>,Where U=l is uniforrly distributed over the interval [bk-l’ak] , and thus

2

Fk‘(;)) # 0 iff (:) is in the square [bk-l , ak]x [b};-l ’ ‘ak] , in which case ,

Fk((;) ) = min( (x-b1)/(aby 1) > (¥0 )/ (b))
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each Gy 1s that bivariate probability distribution function corresponding to the random
vector( 31> , where now Ul and U2 are statistically independent’ identically distributed
uniformlyover the interval [a , b ], thus ak((;f) y & 0 iff (;‘) 15 in the square
Ceg, b ]X0eg,bx] , in vhich case,

6l(3)) = (G /(o)) + ( (v-a)/(y-ay))

Note the important special cases 11/& = F, = min and 1{/& =G

1~ = prod.

1

Suppose now that a given scenario holds so that operator (t-norm) 1[/& is obtainable
at leasy approximately empirically through its use s, by a tabulation of its values over
the unit square. In gentral, this empirically obtained function, denoted by\?/& is pot =
semidiStributive t-norm. However,we can approximate ‘;J& by 2 semidistributive t-norm,
deftermining the coefficients dk and @k i: the expansions given above by matching moments
to any degree desirable between IIJ& and W& +« Since the moments qf Fk and Gk are partic-
ularly easy to obtain, we immediately obtain the tundamental relations

m+ :
Y + Y. +1 +1
MY, Y, ) - (1/(¥1+7f2+1))-§1 CREERC RS N SRS Che

| Sh, %t Wl Yol Yetl
S A RC AN BN S NRE RN (.
. k=1

)
where the (Xl ,)’2) th central moment for 1}/& is given by
d Y Y2
Hon 8 = =M™ ey om
over all
X,y in the

unit square
obtainable by an approximating discretization , for some predetermined size of m and choice
of equalities to hold in the sbove equation for the &, 's and b 's ;'Xl and 1(2 allowed to

run separately over the integers 0,1,2,..,q , for some appropriate choice of q.

We then geek to solve the above fundamental relations for the coefficlents a.k and bk
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in terms of the empirically known A{ ('x'l , X2)'S-
For earlier empirical approaches to the determination of W &

the work of Zimmermann [40] and Hersh and Caramszza [4'],

‘18‘
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5. BASIC CRITIQUE ANy EXYNOPSIS OF MANES' GENERALIZED UNCERTAINTY THECRY

Manes [22) has recently written one o1 the most important papers taking the
external approach to the analysis of uncertainty modeling. (See the earlier pipers of Gaines
[27) end Hirota [25) for much more restrictdd approaches to the development of systems
which extend both probability and fuzzy set concepts.) Because of the paper's great import-
ance and relative difficult format, a synopsis with some critical comments will be presentea
here,

In summary, Manes derives a general class of "fuzzy" theories which reduce as
special cases to finitely discrete probability theory, Zadeh's original ( see [30] ) fuzzy
set syctem (1-(-), min, max), topological neighborhood theory, credibility theory, and other
approaches to the modeling of uncertainties. (To avoid confusion with fuzzy set theories as
discussed in the overview, Manes' models will be designated as "fuzzy" .) Manmes' theories
are characterized by a triple of functions satisfying three basic axioms. The first function
assigns to any space a corresponding space of geheralized distributions over that space ( the
term "generalized" to be made more specific for each particular system satisfying the axioms)

The second function imbeds or f¢zntifies eny given space with the subclass of mass-point

distributions from the associated space of generalized distributions. The third function i
extends conditional generalized distributions -with index set X,say,and distributions in é
the associated space T(Y) of space Y - to operators taking initial distribution space¥X)

to T(Y) . As natural as the first two axioms are ( see below ) in determining the essence

RN AN P75

of the above concepts, the third axiom, an assoeiative-like condition imposed on the extension

ERYRV IRV

function (i.e.,.the third function described above) may be too restrictive., This is because
of the following characterization we have shown : Le¢ F = (1-(-), \Fg , ‘Vor ) be a given %
fuzzy set system ( recalling that If& is some t-norm 2nd ‘Por is some t-conorm), with C)being%
membership funection. blnarv relatioa composition relative to F . Then F is also a "fuzzy" |
theory "with the mapping d%lGD as a function of all binary fuzzy set relatfon membership

functions Q%L being the same as an extension function in Manes' sense , iff ng is right g

distributive over 1Por + As 8 consequence of this result, a whole host of fuzzy set systemsE
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including the important system (1-(.) , prod, probsum) which plays a key role in the weak-
homomorphism theory connecting fuzzy set operations with those ordinary ones cn random sets
(see Appendie A ) , do not satisfy the required third axiom of Manes' "fuzzy" thecries,
although 1t is easily verified that the other two axioms are indeed satisfied always by any
fuzzy set system. Consequently, the elecant resultc obtained for Manes' theories do not apply
to non-right distributive fuzzy set systems, The natural problem that follows is how to change
the requirements of Manes' third axiom so as to accomadate a larger class of fuzzy set systems

Next, a brief treatment with some analysis of Mapes’ results is presented.

A"fuzzy" theory i1s a triple 7 - (T,e,#) of functions so that for all well-defined

spaces X,Y,Z
(i) T(X) is the space of generalized distributions associated with X

(i1) e(X):X~»T(X) is the special function called the imbedding function of X

into the mass-point distributions in T(X)
(111) # : T(Y) s T(Y) (X) is the extension or lifting operator , noting
that the dependence of # on X and Y is not denoted here.
The axioms. 7 must satisfy are :
For any spaces X,Y,Z and mappings o :X—>T(Y) , @:Y —>T(Z)
(1) (X)) o e(x) = o
(2) He(x)) = identT(X)
(3) HHBY o ) = KB MHA) 5 < denoting composifion of funclions .

7adeh Fuzzy Set Theory Example . F = (1-(.), min, mex)

T(X) = [.O,l] x and (e(X) (X)) (}’) = ,SX y (Kronecker delt,a) A XLX,YQ'Y 3|'b,

@b NP N = mex (mn (B (9) L POIY= Pro, ),

for any fuzzy oipsary relation R on XXY and any fuzzy subset A of X ;all yeY .

Finitely Discrete Probability Theory Example

T™(X) = $pl pis a probability function over X with finite support }
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(e(X)(X))(j):Sx’y , for all x€X , yeY

(Ka-* T-"0) D) = G (aty 1) - o) = 5 Caly 1IV))

xeX
for all conditional probability functions q over Y , conditioned on X , and all

p € T(X) , with random varisble V distributed according to probability function pJ_.'

Theorem A\ Goodman-Nguyen, 1982 ) i

Let F=(1-(:;,W , ¥ ) be a given fizzy set system with ® denotins
& or
the fuzzy set binary relation composition relative to F. Thus ( see also

{29 ) for motivation via multivalued truth theory) @ is defined dually @s

(P, 0 &) ¥ 2 Proa O

4) (y)

_(R(ﬁ)(A & 1)

=W ( Y, @R(x,y),q)A(X))) H

or
x € X

and (et
(e(x)(x))(y) 4 §,, »forallxeX,yeYy ,X, Y erbitrery,

with ;
o(x) 4 Co,3% for al1 x

and finwlly define
q
(#((bR))(q)A) = (pR 5 A , for all fumzy binzry relations R on XX Y

and all fuzzy subsets A of X .

Then :

IR T Thevvpe

(1) F satisfies Manes' axioms (1) and (2) for "fuzzy" theory

1mn

(2) F satisfies Manes' axiom (3), and hence is also a "lTuzzy" theory, iff \y& iy §

T,

right distributive overy_ . , i.e.,

]{/& ( a, .‘Por(b’ c)) = Wor( l{/&(a,b), 1{’& (a,c)) ; =11 a,b,c € Lo,11.
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sroof of Tuccerew s

Result (1) follows from straightforeward algebra.

For resnlt (2) :

The lefthand side of Manes' axiom (3) is evaluated as , for an¥ o = d)R , B -'q)s ,
and (bA , -where R is a fuzzy relation (n ?(XY , S is a fuzzy rolation on YXZ , and 8 is &

fuzzy subget of X, 2nd z €Z is arbitrary

wmsn 2 W (W (e, W, (¥ CACRITISN)) S

x€X yeyY

Similerly, the righthand side of axiom (3) becomes

(RS A5z) ggy(%( Vol W00, P(xm)), Slv,))
Y€ -

x €X
Iflr& is distributive over \yor , then by simple induction , the defining equaticn for

right distributivity may be extended to arbitrary number of arguméhts for the 1# or operator,
In turn substituting this into the above expremsions for I and II yields the relation
I(R,S,A3z) = TI(R,S,A52) = ¥ _ (q)&( $,(x), CPR(x,y),CPS(y,z))) )
<x€X),
yEY

For the converse, if axiom (3) is satisfied , then for all R,S,A,z as above, we must
nhave I(R,S,A;z) = II(R,S,A;z). Choose in particular A=X, Y={y} , with all other variables
arbitrary. It follows immediately that right distributivity holds.

[}
Ae a consequence of the above therem, Zadeh's original fuzzy set system is also a

"fuzzy".theory , @86 is the non-Demorgan system (1-(-), prod, max) . On the other hand, the

(Dediorgan) fuzzy set system (l-(-),prod, probsum), and extending this, eny semi-Cistributive
fuzzy sct cystem (except for the boundary system (1-(.), min, max)) in general will not be
right dictributive, end hence will not be a "fuzzy" set tﬁeory. Since semi-distributive
fuzzy set systems are the main link in the week hor.omorphism theory connecting fuzzy set
thenry with random set theory ( see Appendix A for details), the concepts of fuzzy ard

"fuzzy" are not competible here.

-22-
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Manes considers the set of truth distributions ;fo d T({T0 s Foj} ) , vhere T, ( not

to be confused with the function T ) and F, ere fimed values representing truth compouent

and falsehood component, respectively. Alternatively, Manes could have ronsidered the more

aaee cee ael

standard T({.TOS } , or pernaps expanded the truth indices to three or more such ac in

T(-{T » Fo s Mo}' ) , where MO ie some intermedjate truth index such as "reybe".
)

LR

1" A

In addition, Manes , defines "[uzzy" theory mappings, quotients,canonicael subtheories,

requiring commutivity for all relevant arguments and functions. For example, a "fuzzy" abstracé
n-ary operator is defined as an n-ary operator ( on the Cartesian product of gereralized :
distribution spaces) which comnutes with all mappings arising from the extension operation .g
Because of this restriction, it is shown (Manesc' Theorem 3.3) that any such operator mar be

always identified with the operator (#{q}){p) , for some fixed p&T({l,..,n}) as a function :

of q = (qj). L 5 a5€ T(X) , J=1,..,n. Similarly, & “fuzzy" homomorphism ¢ :T(X) — T(Y) °

J=L,..yn - :
is charescterized by its ability to commute with all abstract n-ary operators. This is equi-
valent (see Manes' Theorem 4.1) to the equation

€ = #HLC o e(X)) 5 all X.

Closely related to the above, it is shown that ¢ = #Hol) is always a "fuzzy"

BRSPS 4 o e n s e

e xr gy

homomorphism between T(X) and T(Y) , when ol : X —>T(Y). Extending this result, it follows
d

that for any f:X~—>Y , T(f) = #e(Y)eof) is always a homomorphism also , which respecte

icdentity and functiomal composition, as well as one-to-one ness and onto-ness. (This makes

T(f) as a function of f a functor . )

a - eouy m— e seve -

Zadeh Fuzzy Set Theory Example

T(f) ( Qi) = sup 1((fhi(x)) = de(A) ; for any f:X—Y ~ and di € T(X) .
X€L£=- (2] :

Thus T(f) is the basic fuzzification of functions ¥,

Finitely Discrete Probability Theory Example

(T(£))(p) = ;E: p(x) = probability function of r.v. £(V') , where V has probability
xef-1(.)

function p .,
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Manes extends the idea of the relationship or compatibility of an ordinary set with

a generalized distribution , ard in turn the relationship between two generalized distributions

as follows :

i (s,0) 2 (20 &g N

By ° He({T,F3)e A ) nx—>L

where

S

T, , iff X€S |
Xs(x) = , for any S € X ; p eT(X) . i
. ‘

, iff x€3
o

&g (p,a) 4 K dm ( 23 ,a)Xp) ; 2l p,ae NX) ,
noting the relation

og (C(x),0) = dmEda) ;ellaenn) , xeX.

These relationships reduce to quite familiar ones for fuzzy set and prctability theorries: g

Zadeh Fuzzy Set Theory Example

(B (PP D) = o2 min (B0, G0) = qu & 0w

sup  min (P,(x), ()

x€X
yeX¥
xty

sup(qD(x))
x€S A

(% (P, » P, N(F)

]

(Am (s, ¢, D(z)
(dm (s, &, ) ()

Finitely Discrete Probability Theory Example

sup @ik(x)) ; all fuzzy subsets A of X , Bof Y :
:(¢S

e (psa) = Zun(x)-a(x) = Pr(V =W)

x€X

Cgﬂ&(s,(ik) = :E:p(x) = Pr("V € 8) ; all probability functions p,q over X
x€38
which are finitely discrete , where r.v. \f corresponds to p and \Arto q.

..14_..




Define the imbedding of true and thet of false in the distribution space
o]

as

e

T S Ce({ToF}NT) 5 B & (el LT, F3NE,) -

Then define the following properties which "fuzzy" theories may or may not possess:

A theory is anti-reflexive iff G%X(p, P) = T, implies that p = (e(X))(x) ; ai1 -

PET(X) , x€X , X arbitrary
A theory is faithful iff %( - , p) as a function uf p is one-one and onto.

A theory is propositionally complete iff for any bp,q€T(X) , p$a , there exists a

separating homomorpgism #{(ol) , for some A: X—> ‘fo ,i.e-,(#(d“(l’)i(#(ck))(q) . 4
A theory is consistent iff for any f,g: X—>Y , with f#g , T(f) # T(g) , equivalent-'g

ly, e(X): X—>T(X) is a one-one function. i
i

Summary of theorems and results shown by Manes fur the above properties.

(1) All faithful theories are propositionally complete.

ot T TRAN YL SMIE A T e o

(2) Except for twa degenerate eases of no interest, all theories must be consistent.
(3) Every theory has a largest (canonical) subtheory with crisp points ,i.e., T({ x} ) con- ,
sists of exactly one generalized distribution for any x € X arbitrary, equivalently,

<ﬂrr)\((x,p) = T

, for all p€ T(X) and x€X , where T is associated with the subtheory,

For the Zadeh fuzzy set theory example, this condition is equivalent to the class of

all fuzzy subsets of X which have supremum of their membership function being 1.

. S AT M < b o - oo s s sa et

%or the Finitely discrete probability theory example , T(X) jtself hes crisp points.

(4 Both examples (Zadeh's fuzzy set theory and finitely aiscrete probability theory )
poscess all frur theory properties defined above.

Generalization of "fuszy" theoury hucomorphisms &na the operator # to multivariate settings

and relationshipsto joint and independent generalized disiributions.

An n-homomorphism relative to & theory is & mapping ¥ : T(Xl)Xn-- X T(x,)—> T(Y) .

such that (f | T(Xj)) separately ( all other spaces fixed) is a homomorphism for the theory,-
J=1,..,n.
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The space of all joint generalized distributione with respect to X ard Y ia T(XXY).

For any p€T(X) and g€ T(Y) ,

Me,a) & GH((H (e C,0)Ke) | .y )3(a)

Yey

) LA D) (x, X)), o D) h

and

are the only two ways to minimally extend p and g into a joint ge=neralized distribution ovér
X and Y .
Theorem A (Menes, Theorem 5.7 &and related material)
(1) r‘l = r‘2 » for all p €T(X) and all g€ T(Y) , denoling the common value mapping r , 1
and is & 2-homomorphism (with respect to the thcory)which extends e(XXY) uniquely '
iff for o: X X -+ X X, —> T(Y) , there is a unique extension map

& : T(Xl)X eree X T(Xn)——)T(Y) , noting that for n=1, & = #() , for all possible &

iff the abstract n-ary operators induced by p and q comaute with respect to composition, ;
for 3\” P.9q- »

(2)For any ‘commutative theory, i.e., & theory in which any of the equivalences in (1) are

valié |, the operator eﬁ/x is symmetric in:its arguments.

(3) For any commutative theory, having crisp points is equivalent to I being a one-one mappin%l
Ten [

(4) Both Zadeh's fuzzy set theory and finitely discrete probability theory are commutziive

theories.

The ebove theorem motivates the dezigr-iiaa of ' &s the independent joint distribution

forming mapping .

Zadeh Fuzzy Set Theory Example.

I (@A,CPB) = min( Q)A,(bB) (pointwise)

a((pA: CPB) = Supx (min CPA(XI) ’%(Xe),a((xl,xe)) (pointwise) ; all fuzzy subsets
x.€X: ,
J J
j=1,2

A of X, , Bof X, , and 211 «: XX X—>10) ;5 %, X, , Y erbitrary spaces.

-26-




Finitely Discrete Probability Eheory Example

" (p,q)

p-q

A(p,q) = Z ( p(x7) (%) '°((x1’x2)) ( porntwise)

j=1,2

\

B (VY Vo)) s

where r.v.‘\ficorresponds top and r.v.\/é corresponds to q , the two r.v.'s being statis-

tically independent; for all pé€T(X) , q€T(%) , o 5 X, XX,—2 T(Y) arbitrary,

SaTeRIRETUR 0

Corellary to Theorem A. Generalized "Fuzzification" Principle.

Suppose the "fuzzy" theory under consideration is a commutative one. Let

f: XlX----X X, > Y Ve arbitrary. Then , using the notation of Theorem A,

R RAE——————

¥ 4 ( e(Y)er ):.T(Xl) X "Q(T(Xn) ~——> T(Y) is an n-homomorphism relative to the theory

which is the unique extension of e(Y)«f and is also called , by Qefinition, the m-homomor-

095 sz anv i

phic extension of f. Note that if n=1, then T = #(e(Y)ef)

H

. f is also the "fuzzification"of

- —

£, _ L
Let & theory be commutative and as a special case of the ahove corellary, let

£: {7 ,F % X oo X §T5,F % —> {T_,F.§ be an arbitrary r-ary ordimery truth table functidn

or logical operator. Then T is called the "fuzzification" of operator f. Also, define the i
¢
"fuzzlified" Boolean logic associated with the given theory as ( ;fo » H) , vhere H is the set !

of 211 possible " *fuzzifications" of n-ary logical operators.

. Zaodeh's Fuzzy Set Theory Example.
For any n-ary logical operator f and any tl ,..,tne ;fo ,
L]
(£(ty,..%a))(+) = sup min(ty(x1), -+, %, (x,))
(xl,..,xn
€ r-1(4)

In particular:

-:17:




d d
or(F,,T,) = T, @nd or(Fo,Fo)—Fo , for all tl,tz € ‘Io ,

d

for a1l t € L, ,

For the or operator or: fo X IO-—);[’O , where or(To,To)éor(To,Fo)g

i}

(5r(ty,t0))( T,) = max( min(ty(To),t2(Ty)),min(ty(Ty),t,(F )),min(t,(F ),4,(T)))),

(gf‘(tl,tz) X F)

min( tl(Fqi._'f“z(Fo)).

For the operator & : IOXIO—» &, , vhere &(TO,TO)QTO and &(TO,FO)Q &(F_,T )

3
&(Fg,F,) = Fo , for all t; ,t, € 10 ,

)

((t),4))(T ) = min(ty(T.),4,(T ) ,

(E(t),t0))(F,) = max(min(t, (T,),t,(F)),min(t; (Fy),t (T )),min(t (Fo),to(F )))

. d d
For the negation operator not: Io—y Io , where no’t.(To)--Fo and not(FD)=T° s
(Bot(t))(T ) = t(F,)  and (ASE(£))(F ) = t(T,) .

Finitely Discrete Probability Theory Example.

For any n-ary logical operator f and any ty,..,t Exo s

!

(£(ty et d)(4) = 2oy (x) 20

(xl, X, >
€r-1(.)

For the operator or (as defined earlier) ., for all tl’tzel s
)

In prarticular:

(6‘1"(%;l ,te)) = probsum(tl,tz) (I;ointwise) .

For the operator & (as defined earlier), for all tl,t2
('&'(tl,te)) =t -t (pointwise) ,
For the operator nat (as defined eaiier), for all t , .

)
fiot(t) = 1-t (pointwise) »
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€. ISSUES ARISING IN MODELING UNCERTAINTIES / CONCLUSIONS

This section is loosely held together be the commonality of posing questions ( with
not tco many answers at present, unfortunately) concerning the natural questions that
arise _between natural 1anguage/semantics,1inguistics , fuzzy set theory and probability

theory as approaches to the modeling of uncertainty.

Dubois & Prade (l,255-26k4 )have devoted a section of their compendium on the develop-
ments in fuzzy set theory and its applications to the modeling of fuzzy set membership

functions. A number of baslc approaches are considered, with some emphasis-as should be-

on the empirical aspects aspects of the modeling., In this vein, it should be added that the
weak homomorphic theory developed for example in Appendix A shows that the idea of counting
percentage of times a fixed value possesses a given attribute - which is interpreted as the

evaluation of the corresponding fukzy sct membership function- as is typically done by survey

sampling of individuals, may be identified with the empirical one point coverage prcoocility
function generated by a random sample of random sets that are identically distrituted

and are weazk equivalent to the attribute or fuzzy set in question. However, the following issue
has not been sufficiertly emphasized: In classical statistical techniques, modeling of

distribution functions is often carried out in two basic steps. First, a perameterized family

of distributions is chosen. This may be for reasons of invariance, shape, use of Central Limit :

Theory, or via trends of eerlier empirical evidence. The family is chosen so that it reason-

ably contains the viable alternatives for the true distibution and its size is adjusted accorde

ingly. Then empirical data cor restictions are imposed-such as unbiasedness,sufficiency,minimal
risk with respect to some choice of loss fgnction on errors and estimates of the unknown
parameter value or outcore - yielding either a unique value or a reduced set of values where
the unknown parameter lies. This leads to the cosciuiion that the same procedure should be
applied to other approaches %o uncertainty modeling, where distributions,in now & generalized
or different sense from the clasaical probabilistic one, play a key role in the theory.
Examples of this are fuzzy set theory, with its fuzzy set membership functions » the first

topic mentioned above, flou set theory with its index functions reletive te¢ the individuel
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sets forming a given flou set, and topclogical neighborhood tneory with its neighborhood
filters. (See Manes' uriffed traa“mert of these theories as presented in (@) or gectfon ©
of this paper.) |
Other analogues can be established between fuzzy set theory as applied to parameter
estimation and classical statistical estimation theory. For example, one can assuie a
linear regression model is valid connecting observations with an unknown perameter vector,

with no specification of the relevant distributions involved-at least, at first. Then least

squares, or more generally, & least weighted functional d&efined on the potential errors be-
tween observaetions and possible values of the parameter in question , is deirived, yielding

s reasonable value of the unknown parameter as a function of the observations , i.e., &
statistic, if distributional assumptions were to be made. Then if a fuzzy set modeling
epproach Ais taken, the observations Could be assumed to be generated from corresponding
fuzzy set membership functions , yi@ldéing in turn through the stazderd fuzzification of an
ordinary function (see Goodman [29] or Dubois and Prade [}l for further details on <the
fuzzification or equivalently the obtaining of the mewbership function of an: ordinary
function operating over & space on which fuzzy subsets are also defined ) the fuzzy set
membership function of the“statistic". In turn this leads in a natural way to confidence

sets for the unknown parameter vector, by for example considering the level sets associated
with the aforementioned membership function. (See Goodman [ll],e.g.) for a related technique.
A forthcoming publication will consider this problem in more detail.) Asymptotic properties

of these(fus:y c~i)estimators mey also be obtained as the sarple sizes are increased. Bayesian
techniques may also be developed involving conditional distributions in the fuzzy set sense }

(See Coc3man (8371 for development of these concepts for general fuzzy set systems. See also

Dishkant's related work H2] .)

Is fuzzy set theory rich enough to model reasonably natural languege, or can it be
extended or modified- such as by considering,via the weak homomorphic representation theory

of random sets ( see .Appendix A), two point , and tn generel,multipk point coverage functimS?!
|

A f A m = s e
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Can we express all human (or other?) ideas or conccpts. m terms of natural language? Can these
ideas be reduced to primstives and operators involving them? Can a mathematical/logical
procedure be developed for describing and analyzing natural language in & unified way,
including attributes and operators? What quantitative relationships can be established between
prelinguistic idéas and natural language? How sensitive or robust and how subjective are
concepts translated into nctural language with respect to the particular language chosen
(Wnorf-Sapir hypothesis is involved, see [431] ), individual , and medium used? Is there
always inherent ambiguity in modeling a given concept in natural language? Can we make use of
the enormous body of literature available vhich treats formal linguistics and semantics to
develop a systematic unified framework directly relatable to multivalued logic theory? In a
related menner, we may ask if a unified approach to uncertainty models ( & 1a Mznes (see
section § ) , for example) and tc natural language would be possible? Can the efficiency

of the various approaches to modeling uncertainty be meaningfully compared?
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